Delphi World - ИИ - Урок 3 - Системы распознавания образов (идентификации). Часть 3
Delphi World - это проект, являющийся сборником статей и малодокументированных возможностей  по программированию в среде Delphi. Здесь вы найдёте работы по следующим категориям: delphi, delfi, borland, bds, дельфи, делфи, дэльфи, дэлфи, programming, example, программирование, исходные коды, code, исходники, source, sources, сорцы, сорсы, soft, programs, программы, and, how, delphiworld, базы данных, графика, игры, интернет, сети, компоненты, классы, мультимедиа, ос, железо, программа, интерфейс, рабочий стол, синтаксис, технологии, файловая система...
ИИ - Урок 3 - Системы распознавания образов (идентификации). Часть 3

Автор: Сотник С.Л.

Нейронные сети: обучение без учителя

Рассмотренный в предыдущей главе алгоритм обучения нейронной сети с помощью про-цедуры обратного распространения подразумевает наличие некоего внешнего звена, предостав-ляющего сети кроме входных так же и целевые выходные образы. Алгоритмы, пользующиеся подобной концепцией, называются алгоритмами обучения с учителем. Для их успешного функ-ционирования необходимо наличие экспертов, создающих на предварительном этапе для каждо-го входного образа эталонный выходной. Так как создание искусственного интеллекта движется по пути копирования природных прообразов, ученые не прекращают спор на тему, можно ли считать алгоритмы обучения с учителем натуральными или же они полностью искусственны. Например, обучение человеческого мозга, на первый взгляд, происходит без учителя: на зри-тельные, слуховые, тактильные и прочие рецепторы поступает информация извне, и внутри нервной системы происходит некая самоорганизация. Однако, нельзя отрицать и того, что в жизни человека не мало учителей – и в буквальном, и в переносном смысле, – которые коорди-нируют внешние воздействия. Вместе в тем, чем бы ни закончился спор приверженцев этих двух концепций обучения, они обе имеют право на существование.

Главная черта, делающая обучение без учителя привлекательным, – это его "самостоя-тельность". Процесс обучения, как и в случае обучения с учителем, заключается в подстраива-нии весов синапсов. Некоторые алгоритмы, правда, изменяют и структуру сети, то есть количе-ство нейронов и их взаимосвязи, но такие преобразования правильнее назвать более широким термином – самоорганизацией, и в рамках данной главы они рассматриваться не будут. Очевид-но, что подстройка синапсов может проводиться только на основании информации, доступной в нейроне, то есть его состояния и уже имеющихся весовых коэффициентов. Исходя из этого сооб-ражения и, что более важно, по аналогии с известными принципами самоорганизации нервных клеток, построены алгоритмы обучения Хебба.

Сигнальный метод обучения Хебба заключается в изменении весов по следующему пра-вилу:


сильнее всего обучаются синапсы, соединяющие те нейроны, выходы которых наиболее динамично изменились в сторону увеличения.

Полный алгоритм обучения с применением вышеприведенных формул будет выглядеть так:

1. На стадии инициализации всем весовым коэффициентам присваиваются небольшие слу¬чай¬ные значения.

2. На входы сети подается входной образ, и сигналы возбуждения распространяются по всем слоям согласно принципам классических прямопоточных (feedforward) сетей[1], то есть для каждого нейрона рассчитывается взвешенная сумма его входов, к которой затем применяется активационная (передаточная) функция нейрона, в результате чего получается его выходное зна-чение yi(n), i=0...Mi-1, где Mi – число нейронов в слое i; n=0...N-1, а N – число слоев в сети.

3. На основании полученных выходных значений нейронов по формуле (1) или (2) произ-во¬дится изменение весовых коэффициентов.

4. Цикл с шага 2, пока выходные значения сети не застабилизируются с заданной точнос¬тью. Применение этого нового способа определения завершения обучения, отличного от исполь¬зо¬вавшегося для сети обратного распространения, обусловлено тем, что подстраиваемые зна¬че¬ния синапсов фактически не ограничены.

На втором шаге цикла попеременно предъявляются все образы из входного набора.

Следует отметить, что вид откликов на каждый класс входных образов не известен зара-нее и будет представлять собой произвольное сочетание состояний нейронов выходного слоя, обусловленное случайным распределением весов на стадии инициализации. Вместе с тем, сеть способна обобщать схожие образы, относя их к одному классу. Тестирование обученной сети позволяет определить топологию классов в выходном слое. Для приведения откликов обученной сети к удобному представлению можно дополнить сеть одним слоем, который, например, по ал-горитму обучения однослойного перцептрона необходимо заставить отображать выходные реак¬ции сети в требуемые образы.

Другой алгоритм обучения без учителя – алгоритм Кохонена – предусматривает под-стройку синапсов на основании их значений от предыдущей итерации.



На основе рассмотренного выше метода строятся нейронные сети особого типа – так на-зы¬ва¬емые самоорганизующиеся структуры – self-organizing feature maps (этот устоявшийся пе-ревод с английского, на мой взгляд, не очень удачен, так как, речь идет не об изменении струк-туры сети, а только о подстройке синапсов). Для них после выбора из слоя n нейрона j с мини-мальным расстоянием Dj (4) обучается по формуле (3) не только этот нейрон, но и его соседи, расположенные в окрестности R. Величина R на первых итерациях очень большая, так что обу-чаются все нейроны, но с течением времени она уменьшается до нуля. Таким образом, чем бли-же конец обучения, тем точнее определяется группа нейронов, отвечающих каждому классу об-разов.

Нейронные сети Хопфилда и Хэмминга

Среди различных конфигураций искуственных нейронных сетей (НС) встречаются такие, при классификации которых по принципу обучения, строго говоря, не подходят ни обучение с учителем, ни обучение без учителя. В таких сетях весовые коэффициенты синапсов рассчитыва-ются только однажды перед началом функционирования сети на основе информации об обраба-тываемых данных, и все обучение сети сводится именно к этому расчету. С одной стороны, предъявление априорной информации можно расценивать, как помощь учителя, но с другой – сеть фактически просто запоминает образцы до того, как на ее вход поступают реальные дан-ные, и не может изменять свое поведение, поэтому говорить о звене обратной связи с "миром" (учителем) не приходится. Из сетей с подобной логикой работы наиболее известны сеть Хоп-филда и сеть Хэмминга, которые обычно используются для организации ассоциативной памяти. Далее речь пойдет именно о них.

Структурная схема сети Хопфилда приведена на Рис. 6. Она состоит из единственного слоя нейронов, число которых является одновременно числом входов и выходов сети. Каждый нейрон связан синапсами со всеми остальными нейронами, а также имеет один входной синапс, через который осуществляется ввод сигнала. Выходные сигналы, как обычно, образуются на аксонах.


Задача, решаемая данной сетью в качестве ассоциативной памяти, как правило, формули-руется следующим образом. Известен некоторый набор двоичных сигналов (изображений, зву-ковых оцифровок, прочих данных, описывающих некие объекты или характеристики процес-сов), которые считаются образцовыми. Сеть должна уметь из произвольного неидеального сиг-нала, поданного на ее вход, выделить ("вспомнить" по частичной информации) соответствую-щий образец (если такой есть) или "дать заключение" о том, что входные данные не соответст-вуют ни одному из образцов. В общем случае, любой сигнал может быть описан вектором X = { xi: i=0...n-1}, n – число нейронов в сети и размерность входных и выходных векторов. Каждый элемент xi равен либо +1, либо -1. Обозначим вектор, описывающий k-ый образец, через Xk, а его компоненты, соответственно, – xik, k=0...m-1, m – число образцов. Когда сеть распознает (или "вспомнит") какой-либо образец на основе предъявленных ей данных, ее выходы будут со-держать именно его, то есть Y = Xk, где Y – вектор выходных значений сети: Y = { yi: i=0,...n-1}. В противном случае, выходной вектор не совпадет ни с одним образцовым.

Если, например, сигналы представляют собой некие изображения, то, отобразив в графическом виде данные с выхода сети, можно будет увидеть картинку, полностью совпадающую с одной из образцовых (в случае успеха) или же "вольную импровизацию" сети (в случае неуда-чи).

На стадии инициализации сети весовые коэффициенты синапсов устанавливаются сле-дующим образом:




Когда нет необходимости, чтобы сеть в явном виде выдавала образец, то есть достаточно, скажем, получать номер образца, ассоциативную память успешно реализует сеть Хэмминга. Данная сеть характеризуется, по сравнению с сетью Хопфилда, меньшими затратами на память и объемом вычислений, что становится очевидным из ее структуры (Рис. 8).

Сеть состоит из двух слоев. Первый и второй слои имеют по m нейронов, где m – число образцов. Нейроны первого слоя имеют по n синапсов, соединенных со входами сети (образую-щими фиктивный нулевой слой). Нейроны второго слоя связаны между собой ингибиторными (отрицательными обратными) синаптическими связями. Единственный синапс с положительной обратной связью для каждого нейрона соединен с его же аксоном.

Идея работы сети состоит в нахождении расстояния Хэмминга от тестируемого образа до всех образцов. Расстоянием Хэмминга называется число отличающихся битов в двух бинарных векторах. Сеть должна выбрать образец с минимальным расстоянием Хэмминга до неизвестного входного сигнала, в результате чего будет активизирован только один выход сети, соответст-вующий этому образцу.

На стадии инициализации весовым коэффициентам первого слоя и порогу активационной функции присваиваются следующие значения:


Активационная функция f имеет вид порога (рис. 2б), причем величина F должна быть достаточно большой, чтобы любые возможные значения аргумента не приводили к насыщению.

3. Проверить, изменились ли выходы нейронов второго слоя за последнюю итерацию. Ес-ли да – перейди к шагу 2. Иначе – конец.

Из оценки алгоритма видно, что роль первого слоя весьма условна: воспользовавшись один раз на шаге 1 значениями его весовых коэффициентов, сеть больше не обращается к нему, поэтому первый слой может быть вообще исключен из сети (заменен на матрицу весовых коэф-фициентов).

Проект Delphi World © Выпуск 2002 - 2017
Автор проекта: Эксклюзивные курсы программирования