Delphi World - это проект, являющийся сборником статей и малодокументированных возможностей  по программированию в среде Delphi. Здесь вы найдёте работы по следующим категориям: delphi, delfi, borland, bds, дельфи, делфи, дэльфи, дэлфи, programming, example, программирование, исходные коды, code, исходники, source, sources, сорцы, сорсы, soft, programs, программы, and, how, delphiworld, базы данных, графика, игры, интернет, сети, компоненты, классы, мультимедиа, ос, железо, программа, интерфейс, рабочий стол, синтаксис, технологии, файловая система...
Алгоритм шифрования DES

Оформил: DeeCo

Алгоритм шифрования данных DES разработан для зашифрования и расшифрования данных разрядностью 64 бит на основе 64-битового ключа. Расшифрование выполняется по тому же ключу, что и зашифрование, но этот процесс является инверсным по отношению к процессу зашифрования данных. При описании алгоритма шифрования используются следующие обозначения. Если L и R - последовательности бит, то через LR будем обозначать конкатенацию последовательностей L и R, т.е. последовательность бит, размерность которой равна сумме размерностей L и R. В этой последовательности биты последовательности R следуют за битами последовательности L. Конкатенация битовых строк является ассоциативной, то есть запись ABCDE, означает, что за битами последовательности A, следуют, биты последовательности B, затем C и т.д. Символом + будем обозначать операцию побитового сложения по модулю 2.

Процесс шифрования.

Процесс шифрования данных поясняется рисунком 1. Сначала 64 бита входной последовательности перестанавливаются в соответствии с таблицей 1. Таким образом, бит 58 входной последовательности становится битом 1, бит 50 – 2 и т.д.

Таблица 1. "Начальная перестановка"

58

50

42

34

26

18

10

2

60

52

44

36

28

20

12

4

62

54

46

38

30

22

14

6

64

56

48

40

32

24

16

8

57

49

41

33

25

17

9

1

59

51

43

35

27

19

11

3

61

53

45

37

29

21

13

5

63

55

47

39

31

23

15

7

Полученная последовательность бит разделяется на две последовательности: L(0) (биты 58, 50, 42, ..., 8) и R(0) (биты 57, 49, 41, ..., 7), каждая из которых содержит 32 бита. Затем выполняется итеративный процесс шифрования, который описывается следующими формулами:

L(i)=R(i-1), i=1,2,...,16.

R(i)=L(i-1) + F(R(i-1),K(i)), i=1,2,...,16.

Функция F называется функцией шифрования. Ее аргументами являются последовательность R, полученная на предыдущем шаге, и 48-битовый ключ K(i), который является результатом функции преобразования 64-битового ключа шифра. Подробно функция шифрования и алгоритм получения ключей K(i) описаны ниже.

На последнем шаге итерации будут получены последовательности L(16) и R(16), которые конкатенируются в 64-х битовую последовательность R(16)L(16). Видно, что в полученной последовательности 64 бита, перестанавливаются в соответствии с таблицей 2. Как легко видеть данная перестановка является обратной по отношению к начальной (см. таблицу 1).

Таблица 2. "Конечная перестановка"

40

8

48

16

56

24

64

32

39

7

47

15

55

23

63

31

38

6

46

14

54

22

62

30

37

5

45

13

53

21

61

29

36

4

44

12

52

20

60

28

35

3

43

11

51

19

59

27

34

2

42

10

50

18

58

26

33

1

41

9

49

17

57

25

Полученная последовательность из 64 бит и будет являться зашифрованной последовательностью.

Рисунок 1.

 

Процесс расшифрования.

Процесс расшифрования данных является инверсным по отношению к процессу шифрования. Все действия должны быть выполнены в обратном порядке. Это означает, что расшифровываемые данные сначала переставляются в соответствии с таблицей 1, а затем над последовательностью бит R(16)L(16) выполняется те же действия, что и в процессе зашифрования, но в обратном порядке. Итеративный процесс расшифрования описан следующими формулами:

R(i-1)=L(i), i =16, 15, ..., 1

L(i-1)=R(i)+F(L(i),K(i)), i=16, 15, ..., 1.

На последнем шаге итерации будут получены последовательности L(0) и R(0), которые конкетанируются в 64 битовую последовательность L(0)R(0). В полученной последовательности 64 бита перестанавливаются в соответствии с таблицей 2. Результат преобразования - исходная последовательность бит (расшифрованное 64-битовое значение).

Функция шифрования.

Функция шифрования F(R,K) схематически показана на рисунке 2. Для вычисления значения функции F используется функция E (расширение 32 бит до 48), функции S(1), S(2),...,S(8) преобразование 6-битового числа в 4-битовое) и функция P (перестановка бит в 32-битовой последовательности). Приведем определения этих функций. Аргументами функции шифрования являются R (32 бита) и K (48 бит). Результат функции E(R) есть 48-битовое число, которое складывается по модулю 2 с числом K. Таким образом, получается 48-битовая последовательность, которая рассматривается, как конкатенация 8 строк длиной по 6 бит (т.е. B(1)B(2)B(3)B(4)B(5)B(6)B(7)B(8)). Результат функции S(i)B(i) - 4 битовая последовательность, которую будем обозначать L(i). В результате конкетанации всех 8 полученных последвательностей L(i) имеем 32-битовую последовательность L=L(1)L(2)L(3)L(4)L(5)L(6)L(7)L(8). Наконец, для получения результат функции шифрования надо переставить биты последовательности L. Для этого применяется функция перестановки P(L).

Рисунок 2.

 

Функция расширения Е, выполняющая расширение 32 бит до 48, определяется таблицей 3. В соответствии с этой таблицей первые три бита Е(R) - это биты 32,1 и 2, а последние - 31,32,1.

Таблица 3. "Функция расширения Е"

32

1

2

3

4

5

4

5

6

7

8

9

8

9

10

11

12

13

12

13

14

15

16

17

16

17

18

19

20

21

20

21

22

23

24

25

24

25

26

27

28

29

28

29

30

31

32

1

Функция S(i), которая преобразует 6-битовые числа в 4-битовые, определяется в таблицей 4.

Таблица 4. "Функции преобразования S(i)"

S(1)

14

4

13

1

2

15

11

8

3

10

6

12

5

9

0

7

0

15

7

4

14

2

13

1

10

6

12

11

9

5

3

8

4

1

14

8

13

6

2

11

15

12

9

7

3

10

5

0

15

12

8

2

4

9

1

7

5

11

3

14

10

0

6

13

S(2)

15

1

8

14

6

11

3

4

9

7

2

13

12

0

5

10

3

13

4

7

15

2

8

14

12

0

1

10

6

9

11

5

0

14

7

11

10

4

13

1

5

8

12

6

9

3

2

15

13

8

10

1

3

15

4

2

11

6

7

12

0

5

14

9

S(3)

10

0

9

14

6

3

15

5

1

13

12

7

11

4

2

8

13

7

0

9

3

4

6

10

2

8

5

14

12

11

15

1

13

6

4

9

8

15

3

0

11

1

2

12

5

10

14

7

1

10

13

0

6

9

8

7

4

15

14

3

11

5

2

12

S(4)

7

13

14

3

0

6

9

10

1

2

8

5

11

12

4

15

13

8

11

5

6

15

0

3

4

7

2

12

1

10

14

9

10

6

9

0

12

11

7

13

15

1

3

14

5

2

8

4

3

15

0

6

10

1

13

8

9

4

5

11

12

7

2

14

S(5)

2

12

4

1

7

10

11

6

8

5

3

15

13

0

14

9

14

11

2

12

4

7

13

1

5

0

15

10

3

9

8

6

4

2

1

11

10

13

7

8

15

9

12

5

6

3

0

14

11

8

12

7

1

14

2

13

6

15

0

9

10

4

5

3

S(6)

12

1

10

15

9

2

6

8

0

13

3

4

14

7

5

11

10

15

4

2

7

12

9

5

6

1

13

14

0

11

3

8

9

14

15

5

2

8

12

3

7

0

4

10

1

13

11

6

4

3

2

12

9

5

15

10

11

14

1

7

6

0

8

13

S(7)

4

11

2

14

15

0

8

13

3

12

9

7

5

10

6

1

13

0

11

7

4

9

1

10

14

3

5

12

2

15

8

6

1

4

11

13

12

3

7

14

10

15

6

8

0

5

9

2

6

11

13

8

1

4

10

7

9

5

0

15

14

2

3

12

S(8)

13

2

8

4

6

15

11

1

10

9

3

14

5

0

12

7

1

15

13

8

10

3

7

4

12

5

6

11

0

14

9

2

7

11

4

1

9

12

14

2

0

6

10

13

15

3

5

8

2

1

14

7

4

10

8

13

15

12

9

0

3

5

6

11

К таблице 4 требуются дополнительные пояснения. Каждая из функций S(i)B(i) преобразет 6-битовый код в 4-битовый выход по следующему алгоритму:

  • первый и последний биты входной последовательности B, определяют номер строки k.
  • второй, третий, четвертый и пятый биты последовательности B задают номер колонки l
  • результат преобразования выбирается из строки k и колонки l.

Предположим, что B=011011. Тогда S(1)(B)=0101. Действительно, k=1, l=13. В колонке 13 строки 1 задано значение 5, которое и является значением функции S(1)(011011).

Функция перестановки бит P(L), также используемая для определения функции шифрования, задается значениями, приведенными в таблице 5. В последовательности L 32 перестанавливается так, чтобы бит 16 стал первым битом, бит 7 - вторым и т.д.

Таблица 5. "Функция перестановки P"

16

7

20

21

29

12

28

17

1

15

23

26

5

18

31

10

2

8

24

14

32

27

3

9

19

13

30

6

22

11

4

25

Процесс получения ключей.

Чтобы завершить описание алгоритма шифрования данных, осталось привести алгоритм получение ключей K(i), i=1,2,...,16, размерностью в 48 бит. Ключи K(i) определяются по 64-битовому ключу шифра как это показано на рисунке 3.

Рисунок 3.

В начале над ключом шифра выполняется операция B, которая сводится к выбору определенных бит и их перестановке, как это показано в таблицей 6. Причем, первые четыре строки определяют, как выбираются биты последовательности C(0) (первым битом C(0) будет бит 57 бит ключа шифра, затем бит 49 и т.д., а последними битами биты 44 и 36 ключа шифра), а следующие четыре строки - как выбираются биты последовательности D(0) (т.е. последовательность D(0) будем состоять из битов 63,55,...,12, 4 ключа шифра).

Таблица 6. "Функция перестановки и выбора последовательности B"

57

49

41

33

25

17

9

1

58

50

42

34

26

18

10

2

59

51

43

35

27

19

11

3

60

52

44

36

63

55

47

39

31

23

15

7

62

54

46

38

30

22

14

6

61

53

45

37

29

21

13

5

28

20

12

4

Как видно из таблицы 6, для генерации последовательностей C(0) и D(0) не используются биты 8,16,25,32,40,48,56 и 64 ключа шифра. Эти биты не влияют на шифрование и могут служить для других целей (например, для контроля по четности). Таким образом, в действительности ключ шифра является 56-битовым. После определения C(0) и D(0) рекурсивно определяются C(i) и D(i), i=1,2,...,16. Для этого применяются операции сдвига влево на один или два бита в зависимости от номера шага итерации, как это показано в таблицей 7. Операции сдвига выполняются для последовательностей C(i) и D(i) независимо. Например, последовательность C(3) получается, посредством сдвига влево на две позиции последовательности C(2), а последовательность D(3) - посредством сдвига влево на две позиции последовательности D(2). Следует иметь в виду, что выполняется циклический сдвиг влево. Например, единичный сдвиг влево последовательности C(i) приведет к тому, что первый бит C(i) станет последним и последовательность бит будет следующая: 2,3,..., 28,1.

Таблица 7. "Функция сдвига Si"

1

1

2

1

3

2

4

2

5

2

6

2

7

2

8

2

9

1

10

2

11

2

12

2

13

2

14

2

15

2

16

1

Ключ K(i), определяемый на каждом шаге итерации, есть результат выбора определенных бит из 56-битовой последовательности C(i)D(i) и их перестановки. Другими словами, K(i) = K(C(i)D(i)), где функция K определяется данными, приведенными в таблицей 8.

Таблица 8. "Функция перестановки и выбора K"

14

17

11

24

1

5

3

28

15

6

21

10

23

19

12

4

26

8

16

7

27

20

13

2

41

52

31

37

47

55

30

40

51

45

33

48

44

49

39

56

34

53

46

42

50

36

29

32

Как следует из таблицы 8 первый бит K(i) - это бит 14 последовательности C(i)D(i), второй - бит 17, последний - бит 32.

Проект Delphi World © Выпуск 2002 - 2024
Автор проекта: USU Software
Вы можете выкупить этот проект.