Алгоритм шифрования ГОСТ 28147-89
Автор: Андрей Винокуров
Предлагаемая вашему вниманию статья содержит описание алгоритма, принятого в качестве стандарта шифрования в Российской Федерации и его реализации для процессоров семейства Intel x86, а также обсуждение различных вопросов его практического использования. Часть материалов, вошедших в данную статью, была опубликована в журнале «Монитор» №1,5 в 1995 году.
Содержание
Вместо предисловия
1. Описание алгоритма.
1.1. Термины и обозначения.
1.2. Логика построения шифра и структура ключевой информации ГОСТа.
1.3. Основной шаг криптопреобразования.
1.4. Базовые циклы криптографических преобразований.
1.5. Основные режимы шифрования.
2. Обсуждение криптографических алгоритмов ГОСТа.
2.1. Криптографическая стойкость ГОСТа.
2.2. Замечания по архитектуре ГОСТа.
2.3. Требования к качеству ключевой информации и источники ключей.
3. Замечания по реализации.
3.1. Три шага оптимизации.
3.2. Описание функций и особенности реализации.
3.3. Вопрос быстродействия.
4. Вопросы использования стандарта.
4.1. Надежность реализации.
4.2. Вариации на тему ГОСТа.
4.3. Необычная работа криптографической гаммы.
Вместо предисловия.
То, что информация имеет ценность, люди осознали очень давно – недаром переписка сильных мира сего издавна была объектом пристального внимания их недругов и друзей. Тогда-то и возникла задача защиты этой переписки от чрезмерно любопытных глаз. Древние пытались использовать для решения этой задачи самые разнообразные методы, и одним из них была тайнопись – умение составлять сообщения таким образом, чтобы его смысл был недоступен никому кроме посвященных в тайну. Есть свидетельства тому, что искусство тайнописи зародилось еще в доантичные времена. На протяжении всей своей многовековой истории, вплоть до совсем недавнего времени, это искусство служило немногим, в основном верхушке общества, не выходя за пределы резиденций глав государств, посольств и – конечно же ! – разведывательных миссий. И лишь несколько десятилетий назад все изменилось коренным образом – информация приобрела самостоятельную коммерческую ценность и стала широко распространенным, почти обычным товаром. Ее производят, хранят, транспортируют, продают и покупают, а значит – воруют и подделывают – и, следовательно, ее необходимо защищать. Современное общество все в большей степени становится информационно–обусловленным, успех любого вида деятельности все сильней зависит от обладания определенными сведениями и от отсутствия их у конкурентов. И чем сильней проявляется указанный эффект, тем больше потенциальные убытки от злоупотреблений в информационной сфере, и тем больше потребность в защите информации. Одним словом, возникновение индустрии обработки информации с железной необходимостью привело к возникновению индустрии средств защиты информации.
Среди всего спектра методов защиты данных от нежелательного доступа особое место занимают криптографические методы. В отличие от других методов, они опираются лишь на свойства самой информации и не используют свойства ее материальных носителей, особенности узлов ее обработки, передачи и хранения. Образно говоря, криптографические методы строят барьер между защищаемой информацией и реальным или потенциальным злоумышленником из самой информации. Конечно, под криптографической защитой в первую очередь – так уж сложилось исторически – подразумевается шифрование данных. Раньше, когда эта операция выполнялось человеком вручную или с использованием различных приспособлений, и при посольствах содержались многолюдные отделы шифровальщиков, развитие криптографии сдерживалось проблемой реализации шифров, ведь придумать можно было все что угодно, но как это реализовать… Появление цифровых электронно-вычислительных машин, приведшее в конечном итоге к созданию мощной информационной индустрии, изменило все коренным образом и в этой сфере. С одной стороны, взломщики шифров получили в свои руки чрезвычайно мощное орудие, с другой стороны, барьер сложности реализации исчез и для создателей шифров открылись практически безграничные перспективы. Все это определило стремительный прогресс криптографии в последние десятилетия.
Как всякое уважающее себя государство, Российская Федерация имеет свой стандарт шифрования. Этот стандарт закреплен ГОСТом №28147-89, принятом, как явствует из его обозначения, еще в 1989 году в СССР. Однако, без сомнения, история этого шифра гораздо более давняя. Стандарт родился предположительно в недрах восьмого главного управления КГБ СССР, преобразованного ныне в ФАПСИ. Мне довелось беседовать с людьми, утверждавшими, что еще в 70-х годах они участвовали в проектах создания программных и аппаратных реализаций этого шифра для различных компьютерных платформ. В те времена он имел гриф «Сов. секретно», позже гриф был изменен на «секретно», затем снят совсем. На моем экземпляре ГОСТа стояла лишь скромная пометка «ДСП». К сожалению, в отличие от самого стандарта, история его создания и критерии проектирования шифра до сих пор остаются тайной за семью печатями.
Возможное использование ГОСТа в Ваших собственных разработках ставит ряд вопросов. Вопрос первый – нет ли юридических препятствий для этого. Ответ здесь простой – таких препятствий нет и вы можете свободно использовать ГОСТ, он не запатентован, следовательно, не у кого спрашивать разрешения. Более того, вы имеете на это полное моральное право как наследники тех, кто оплатил разработку стандарта из своего кармана, – прежде всего я имею ввиду ваших родителей. Известный указ Президента России №334 от 03.04.95 и соответствующие постановления правительства ничего нового не вносят в эту картину. Хотя они формально и запрещают разработку систем, содержащих средства криптозащиты юридическими и физическими лицами, не имеющими лицензии на этот вид деятельности, но реально указ распространяется лишь на случай государственных секретов, данных, составляющих банковскую тайну и т.п., словом, он действует только там, где нужна бумажка, что «данные защищены».
Хорошо, с правомочностью применения ГОСТа разобрались, теперь остановимся на вопросе целесообразности – прежде всего, можем ли мы доверять этому порождению мрачной Лубянки, не встроили ли товарищи чекисты лазеек в алгоритмы шифрования? Это весьма маловероятно, так как ГОСТ создавался в те времена, когда было немыслимо его использование за пределами государственных режимных объектов. С другой стороны, стойкость криптографического алгоритма нельзя подтвердить, ее можно только опровергнуть взломом. Поэтому, чем старше алгоритм, тем больше шансов на то, что, если уж он не взломан до сих пор, он не будет взломан и в ближайшем обозримом будущем. В этом свете все разговоры о последних «оригинальных разработках» «талантливых ребят» в принципе не могут быть серьезными – каждый шифр должен выдержать проверку временем. Но ведь шифров, выдержавших подобную проверку, заведомо больше одного – кроме ГОСТа ведь есть еще и DES, его старший американский братец, есть и другие шифры. Почему тогда ГОСТ? Конечно, во многом это дело личных пристрастий, но надо помнить еще и о том, что ГОСТ по большинству параметров превосходит все эти алгоритмы, в том числе и DES. И, в конце концов, где же наш Российский Патриотизм?!
Широкому использованию ГОСТа в разработках Российских программистов мешает, по моему мнению, недостаток опубликованной информации о нем, а также некий ореол таинственности, сложившийся вокруг него и искусно кем-то поддерживаемый. На самом деле ничего сложного в шифре нет, он доступен для понимания и реализации программисту любого уровня, но, как и во всем прочем, для создания действительно хорошей реализации надо быть профессионалом. Я работал с ГОСТом как программист с 91 по 94 год, и за это время у меня получилась весьма удачная (ну как себя не похвалить!) его программная реализация для процессоров семейства Intel x86, приближающаяся по быстродействию к возможному оптимуму.
Целью настоящей статьи является знакомство всех заинтересованных с самим алгоритмом и его реализацией на платформе Intel x86. Разработанную мной реализацию ГОСТа я предоставляю в общественную собственность, ее может использовать каждый при условии ссылки на мое авторство. Текст настоящей статьи может неограниченно распространяться в печатном и электронном виде в том и только в том случае, если это не сопряжено прямо или косвенно с извлечением прибыли, в противном случае требуется мое письменное разрешение.
Статья состоит из четырех частей. Первая часть содержит описание, а вторая – обсуждение алгоритма, третья и четвертая части содержат соответственно описание его реализации и обсуждение некоторых аспектов его применения. Итак, начнем...
1. Описание алгоритма.
1.1. Термины и обозначения.
Описание стандарта шифрования Российской Федерации содержится в очень интересном документе, озаглавленном «Алгоритм криптографического преобразования данных ГОСТ 28147-89». То, что в его названии вместо термина «шифрование» фигурирует более общее понятие «криптографическое преобразование», вовсе не случайно. Помимо нескольких тесно связанных между собой процедур шифрования, в документе описан один построенный на общих принципах с ними алгоритм выработки имитовставки. Последняя является не чем иным, как криптографической контрольной комбинацией, то есть кодом, вырабатываемым из исходных данных с использованием секретного ключа с целью имитозащиты, или защиты данных от внесения в них несанкционированных изменений.
На различных шагах алгоритмов ГОСТа данные, которыми они оперируют, интерпретируются и используются различным образом. В некоторых случаях элементы данных обрабатываются как массивы независимых битов, в других случаях – как целое число без знака, в третьих – как имеющий структуру сложный элемент, состоящий из нескольких более простых элементов. Поэтому во избежание путаницы следует договориться об используемых обозначениях.
1.2 Логика построения шифра и структура ключевой информации ГОСТа.
Если внимательно изучить оригинал ГОСТа 28147–89, можно заметить, что в нем содержится описание алгоритмов нескольких уровней. На самом верхнем находятся практические алгоритмы, предназначенные для шифрования массивов данных и выработки для них имитовставки. Все они опираются на три алгоритма низшего уровня, называемые в тексте ГОСТа циклами. Эти фундаментальные алгоритмы упоминаются в данной статье как базовые циклы, чтобы отличать их от всех прочих циклов. Они имеют следующие названия и обозначения, последние приведены в скобках и смысл их будет объяснен позже:
- цикл зашифрования (32-З);
- цикл расшифрования (32-Р);
- цикл выработки имитовставки (16-З).
В свою очередь, каждый из базовых циклов представляет собой многократное повторение одной единственной процедуры, называемой для определенности далее в настоящей работе основным шагом криптопреобразования.
Таким образом, чтобы разобраться в ГОСТе, надо понять три следующие вещи:
- а) что такое основной шаг криптопреобразования;
- б) как из основных шагов складываются базовые циклы;
- в) как из трех базовых циклов складываются все практические алгоритмы ГОСТа.
Прежде чем перейти к изучению этих вопросов, следует поговорить о ключевой информации, используемой алгоритмами ГОСТа. В соответствии с принципом Кирхгофа, которому удовлетворяют все современные известные широкой общественности шифры, именно ее секретность обеспечивает секретность зашифрованного сообщения. В ГОСТе ключевая информация состоит из двух структур данных. Помимо собственно ключа, необходимого для всех шифров, она содержит еще и таблицу замен. Ниже приведены основные характеристики ключевых структур ГОСТа.
Шаг 1. Сложение с ключом. Младшая половина преобразуемого блока складывается по модулю 232 с используемым на шаге элементом ключа, результат передается на следующий шаг;
Шаг 2. Поблочная замена. 32-битовое значение, полученное на предыдущем шаге, интерпретируется как массив из восьми 4-битовых блоков кода: S=(S0,S1,S2,S3,S4,S5,S6,S7).
Далее значение каждого из восьми блоков заменяется на новое, которое выбирается по таблице замен следующим образом: значение блока Si заменяется на Si-тый по порядку элемент (нумерация с нуля) i-того узла замен (т.е. i-той строки таблицы замен, нумерация также с нуля). Другими словами, в качестве замены для значения блока выбирается элемент из таблицы замен с номером строки, равным номеру заменяемого блока, и номером столбца, равным значению заменяемого блока как 4-битового целого неотрицательного числа. Теперь становится понятным размер таблицы замен: число строк в ней равно числу 4-битных элементов в 32-битном блоке данных, то есть восьми, а число столбцов равно числу различных значений 4-битного блока данных, равному как известно 24, шестнадцати.
Рис. 1. Схема основного шага криптопреобразования алгоритма ГОСТ 28147-89.
Шаг 3. Циклический сдвиг на 11 бит влево. Результат предыдущего шага сдвигается циклически на 11 бит в сторону старших разрядов и передается на следующий шаг. На схеме алгоритма символом []11 обозначена функция циклического сдвига своего аргумента на 11 бит в сторону старших разрядов.
Шаг 4. Побитовое сложение: значение, полученное на шаге 3, побитно складывается по модулю 2 со старшей половиной преобразуемого блока.
Шаг 5. Сдвиг по цепочке: младшая часть преобразуемого блока сдвигается на место старшей, а на ее место помещается результат выполнения предыдущего шага.
Шаг 6. Полученное значение преобразуемого блока возвращается как результат выполнения алгоритма основного шага криптопреобразования.
Базовые циклы криптографических преобразований.
Как отмечено в начале настоящей статьи, ГОСТ относится к классу блочных шифров, то есть единицей обработки информации в нем является блок данных. Следовательно, вполне логично ожидать, что в нем будут определены алгоритмы для криптографических преобразований, то есть для зашифрования, расшифрования и «учета» в контрольной комбинации одного блока данных. Именно эти алгоритмы и называются базовыми циклами ГОСТа, что подчеркивает их фундаментальное значение для построения этого шифра.
Базовые циклы построены из основных шагов криптографического преобразования, рассмотренного в предыдущем разделе. В процессе выполнения основного шага используется только один элемент ключа, в то время как ключ ГОСТ содержит восемь таких элементов. Следовательно, чтобы ключ был использован полностью, каждый из базовых циклов должен многократно выполнять основной шаг с различными его элементами. Вместе с тем кажется вполне естественным, что в каждом базовом цикле все элементы ключа должны быть использованы одинаковое число раз, по соображениям стойкости шифра это число должно быть больше одного.
Все сделанные выше предположения, опирающиеся просто на здравый смысл, оказались верными. Базовые циклы заключаются в многократном выполнении основного шага с использованием разных элементов ключа и отличаются друг от друга только числом повторения шага и порядком использования ключевых элементов. Ниже приведен этот порядок для различных циклов.
1. Цикл зашифрования 32-З:
K0,K1,K2,K3,K4,K5,K6,K7,K0,K1,K2,K3,K4,K5,K6,K7,K0,K1,K2,K3,K4,K5,K6,K7,K7,K6,K5,K4,K3,K2,K1,K0.
2. Цикл расшифрования 32-Р:
K0,K1,K2,K3,K4,K5,K6,K7,K7,K6,K5,K4,K3,K2,K1,K0,K7,K6,K5,K4,K3,K2,K1,K0,K7,K6,K5,K4,K3,K2,K1,K0.
3. Цикл выработки имитовставки 16-З:
K0,K1,K2,K3,K4,K5,K6,K7,K0,K1,K2,K3,K4,K5,K6,K7.
Каждый из циклов имеет собственное буквенно-цифровое обозначение, соответствующее шаблону «n-X», где первый элемент обозначения (n), задает число повторений основного шага в цикле, а второй элемент обозначения (X), буква, задает порядок зашифрования («З») или расшифрования («Р») в использовании ключевых элементов. Этот порядок нуждается в дополнительном пояснении:
Цикл расшифрования должен быть обратным циклу зашифрования, то есть последовательное применение этих двух циклов к произвольному блоку должно дать в итоге исходный блок, что отражается следующим соотношением: Ц32-Р(Ц32-З(T))=T, где T – произвольный 64-битный блок данных, ЦX(T) – результат выполнения цикла X над блоком данных T. Для выполнения этого условия для алгоритмов, подобных ГОСТу, необходимо и достаточно, чтобы порядок использования ключевых элементов соответствующими циклами был взаимно обратным. В справедливости записанного условия для рассматриваемого случая легко убедиться, сравнив приведенные выше последовательности для циклов 32-З и 32-Р. Из сказанного вытекает одно интересное следствие: свойство цикла быть обратным другому циклу является взаимным, то есть цикл 32-З является обратным по отношению к циклу 32-Р. Другими словами, зашифрование блока данных теоретически может быть выполнено с помощью цикла расшифрования, в этом случае расшифрование блока данных должно быть выполнено циклом зашифрования. Из двух взаимно обратных циклов любой может быть использован для зашифрования, тогда второй должен быть использован для расшифрования данных, однако стандарт ГОСТ28147-89 закрепляет роли за циклами и не предоставляет пользователю права выбора в этом вопросе.
Цикл выработки имитовставки вдвое короче циклов шифрования, порядок использования ключевых элементов в нем такой же, как в первых 16 шагах цикла зашифрования, в чем нетрудно убедиться, рассмотрев приведенные выше последовательности, поэтому этот порядок в обозначении цикла кодируется той же самой буквой «З».
Основные режимы шифрования.
ГОСТ 28147-89 предусматривает три следующих режима шифрования данных:
1 простая замена,
2 гаммирование,
3 гаммирование с обратной связью,
и один дополнительный режим выработки имитовставки.
В любом из этих режимов данные обрабатываются блоками по 64 бита, на которые разбивается массив, подвергаемый криптографическому преобразованию, именно поэтому ГОСТ относится к блочным шифрам. Однако в двух режимах гаммирования есть возможность обработки неполного блока данных размером меньше 8 байт, что существенно при шифровании массивов данных с произвольным размером, который может быть не кратным 8 байтам.
Прежде чем перейти к рассмотрению конкретных алгоритмов криптографических преобразований, необходимо пояснить обозначения, используемые на схемах в следующих разделах:
шифрования массивов данных с размером кратным 64 битам, не содержащим повторяющихся 64-битных блоков. Кажется, что для любых реальных данных гарантировать выполнение указанных условий невозможно. Это почти так, но есть одно очень важное исключение: вспомните, что размер ключа составляет 32 байта, а размер таблицы замен – 64 байта. Кроме того, наличие повторяющихся 8-байтовых блоков в ключе или таблице замен будет говорить об их весьма плохом качестве, поэтому в реальных ключевых элементах такого повторения быть не может. Таким образом мы выяснили, что режим простой замены вполне подходит для шифрования ключевой информации, тем более, что прочие режимы для этой цели менее удобны, поскольку требуют наличия дополнительного синхронизирующего элемента данных – синхропосылки (см. следующий раздел). Наша догадка верна, ГОСТ предписывает использовать режим простой замены исключительно для шифрования ключевых данных.
2. Гаммирование.
Как же можно избавиться от недостатков режима простой замены? Для этого не¬обходимо сделать возможным шифрование блоков с размером менее 64 бит и обеспечить зависимость блока шифротекста от его номера, иными словами, рандомизировать процесс шифрования. В ГОСТе это достигается двумя различными способами в двух режимах шифрования, предусматривающих гаммирование. Гаммирование – это наложение (снятие) на открытые (зашифрованные) данные криптографической гаммы, то есть последовательности элементов данных, вырабатываемых с помощью некоторого криптографического алгоритма, для получения зашифрованных (открытых) данных. Для наложения гаммы при зашифровании и ее снятия при расшифровании должны использоваться взаимно обратные бинарные операции, например, сложение и вычитание по модулю 264 для 64-битных блоков данных. В ГОСТе для этой цели используется операция побитного сложения по модулю 2, поскольку она является обратной самой себе и к тому же наиболее просто реализуется. Гаммирование решает обе упомянутые проблемы; во первых, все элементы гаммы различны для реальных шифруемых массивов и, следовательно, результат зашифрования даже двух одинаковых блоков в одном массиве данных будет различным. Во вторых, хотя элементы гаммы и вырабатываются одинаковыми порциями в 64 бита, использоваться может и часть такого блока с размером, равным размеру шифруемого блока.
Теперь перейдем непосредственно к описанию режима гаммирования. Гамма для этого режима получается следующим образом: с помощью некоторого алгоритмического рекуррентного генератора последовательности чисел (РГПЧ) вырабатываются 64-битные блоки данных, которые далее подвергаются преобразованию по циклу 32-З, то есть зашифрованию в режиме простой замены, в результате получаются блоки гаммы. Благодаря тому, что наложение и снятие гаммы осуществляется при помощи одной и той же операции побитового исключающего или, алгоритмы зашифрования и расшифрования в режиме гаммирования идентичны, их общая схема приведена на рисунке 5.
Таким образом, последовательность элементов гаммы для использования в режиме гаммирования однозначно определяется ключевыми данными и синхропосылкой. Естественно, для обратимости процедуры шифрования в процессах за- и расшифрования должна использоваться одна и та же синхропосылка. Из требования уникальности гаммы, невыполнение которого приводит к катастрофическому снижению стойкости шифра, следует, что для шифрования двух различных массивов данных на одном ключе необходимо обеспечить использование различных синхропосылок. Это приводит к необходимости хранить или передавать синхропосылку по каналам связи вместе с зашифрованными данными, хотя в отдельных особых случаях она может быть предопределена или вычисляться особым образом, если исключается шифрование двух массивов на одном ключе.
Теперь подробно рассмотрим РГПЧ, используемый в ГОСТе для генерации элементов гаммы. Прежде всего надо отметить, что к нему не предъявляются требования обеспечения каких-либо статистических характеристик вырабатываемой последователь¬ности чисел. РГПЧ спроектирован разработчиками ГОСТа исходя из необходимости выполнения следующих условий:
4 период повторения последовательности чисел, вырабатываемой РГПЧ, не должен сильно (в процентном отношении) отличаться от максимально возможного при заданном размере блока значения 264;
5 соседние значения, вырабатываемые РГПЧ, должны отличаться друг от друга в каждом байте, иначе задача криптоаналитика будет упрощена;
6 РГПЧ должен быть достаточно просто реализуем как аппаратно, так и программно на наиболее распространенных типах процессоров, большинство из которых, как известно, имеют разрядность 32 бита.
Исходя из перечисленных принципов создатели ГОСТа спроектировали весьма удачный РГПЧ, имеющий следующие характеристики:
7 в 64-битовом блоке старшая и младшая части обрабатываются независимо друг от друга:
выработанный РГПЧ, подвергается процедуре зашифрования по циклу 32–З, результат используется как элемент гаммы для зашифрования (расшифрования) очередного блока открытых (зашифрованных) данных того же размера.
Шаг 4. Результат работы алгоритма – зашифрованный (расшифрованный) массив данных.
Ниже перечислены особенности гаммирования как режима шифрования.
1. Одинаковые блоки в открытом массиве данных дадут при зашифровании различные блоки шифротекста, что позволит скрыть факт их идентичности.
2. Поскольку наложение гаммы выполняется побитно, шифрование неполного блока данных легко выполнимо как шифрование битов этого неполного блока, для чего используется соответствующие биты блока гаммы . Так, для зашифрования неполного блока в 1 бит можно использовать любой бит из блока гаммы.
3. Синхропосылка, использованная при зашифровании, каким-то образом должна быть передана для использования при расшифровании. Это может быть достигнуто следующими путями:
10 хранить или передавать синхропосылку вместе с зашифрованным массивом данных, что приведет к увеличению размера массива данных при зашифровании на размер синхропосылки, то есть на 8 байт;
11 использовать предопределенное значение синхропосылки или вырабатывать ее синхронно источником и приемником по определенному закону, в этом случае изменение размера передаваемого или хранимого массива данных отсутствует;
Оба способа дополняют друг друга, и в тех редких случаях, где не работает первый, наиболее употребительный из них, может быть использован второй, более экзотический. Второй способ имеет гораздо меньшее применение, поскольку сделать синхропосылку предопределенной можно только в том случае, если на данном комплекте ключевой информации шифруется заведомо не более одного массива данных, что бывает в редких случаях. Генерировать синхропосылку синхронно у источника и получателя массива данных также не всегда представляется возможным, поскольку требует жесткой привязки к чему-либо в системе. Так, здравая на первый взгляд идея использовать в качестве синхропосылки в системе передачи зашифрованных сообщений номер передаваемого сообщения не подходит, поскольку сообщение может потеряться и не дойти до адресата, в этом случае произойдет десинхронизация систем шифрования источника и приемника. Поэтому в рассмотренном случае нет альтернативы передаче синхропосылки вместе с зашифрованным сообщением.
С другой стороны, можно привести и обратный пример. Допустим, шифрование данных используется для защиты информации на диске, и реализовано оно на низком уровне, для обеспечения независимого доступа данные шифруются по секторам. В этом случае невозможно хранить синхропосылку вместе с зашифрованными данными, поскольку размер сектора нельзя изменить, однако ее можно вычислять как некоторую функцию от номера считывающей головки диска, номера дорожки (цилиндра) и номера сектора на дорожке. В этом случае синхропосылка привязывается к положению сектора на диске, которое вряд ли может измениться без переформатирования диска, то есть без уничтожения данных на нем.
Режим гаммирования имеет еще одну интересную особенность. В этом режиме биты массива данных шифруются независимо друг от друга. Таким образом, каждый бит шифротекста зависит от соответствующего бита открытого текста и, естественно, порядкового номера бита в массиве:
Данное свойство дает злоумышленнику возможность воздействуя на биты шифротекста вносить предсказуемые и даже целенаправленные изменения в соответствующий открытый текст, получаемый после его расшифрования, не обладая при этом секретным ключом. Это иллюстрирует хорошо известный в криптологии факт, что «секретность и аутентичность суть различные свойства шифров». Иными словами, свойства шифров обеспечивать защиту от несанкционированного ознакомления с содержимым сообщения и от несанкционированного внесения изменений в сообщение являются независимыми и лишь в отдельных случаях могут пересекаться. Сказанное означает, что существуют криптографические алгоритмы, обеспечивающие определенную секретность зашифрованных данных и при этом никак не защищающие от внесения изменений и наоборот, обеспечивающие аутентичность данных и никак не ограничивающие возможность ознакомления с ними. По этой причине рассматриваемое свойство режима гаммирования не должно рассматриваться как его недостаток.
3. Гаммирование с обратной связью.
Данный режим очень похож на режим гаммирования и отличается от него только способом выработки элементов гаммы – очередной элемент гаммы вырабатывается как результат преобразования по циклу 32-З предыдущего блока зашифрованных данных, а для зашифрования первого блока массива данных элемент гаммы вырабатывается как результат преобразования по тому же циклу синхропосылки. Этим достигается зацепление блоков – каждый блок шифротекста в этом режиме зависит от соответствующего и всех предыдущих блоков открытого текста. Поэтому данный режим иногда называется гаммированием с зацеплением блоков. На стойкость шифра факт зацепления блоков не оказывает никакого влияния.
искажения в зашифрованный блок, то после расшифрования искаженными окажутся два блока открытых данных – соответствующий и следующий за ним, причем искажения в первом случае будут носить тот же характер, что и в режиме гаммирования, а во втором случае – как в режиме простой замены. Другими словами, в соответствующем блоке открытых данных искаженными окажутся те же самые биты, что и в блоке шифрованных данных, а в следующем блоке открытых данных все биты независимо друг от друга с вероятностью 1/2 изменят свои значения.
|