Сортировка вставками
Сортировка простыми вставками в чем-то похожа на вышеизложенные методы.
Аналогичным образом делаются проходы по части массива, и аналогичным же образом в его начале "вырастает" отсортированная последовательность...
Однако в сортировке пузырьком или выбором можно было четко заявить, что на i-м шаге элементы a[0]...a[i] стоят на правильных местах и никуда более не переместятся. Здесь же подобное утверждение будет более слабым: последовательность a[0]...a[i] упорядочена. При этом по ходу алгоритма в нее будут вставляться (см. название метода) все новые элементы.
Будем разбирать алгоритм, рассматривая его действия на i-м шаге. Как говорилось выше, последовательность к этому моменту разделена на две части: готовую a[0]...a[i] и неупорядоченную a[i+1]...a[n].
На следующем, (i+1)-м каждом шаге алгоритма берем a[i+1] и вставляем на нужное место в готовую часть массива.
Поиск подходящего места для очередного элемента входной последовательности осуществляется путем последовательных сравнений с элементом, стоящим перед ним.
В зависимости от результата сравнения элемент либо остается на текущем месте(вставка завершена), либо они меняются местами и процесс повторяется.
Таким образом, в процессе вставки мы "просеиваем" элемент x к началу массива, останавливаясь в случае, когда
Hайден элемент, меньший x или
Достигнуто начало последовательности.
template
void insertSort(T a[], long size) {
T x;
long i, j;
for ( i=0; i < size; i++) { // цикл проходов, i - номер прохода
x = a[i];
// поиск места элемента в готовой последовательности
for ( j=i-1; j>=0 && a[j] > x; j--)
a[j+1] = a[j]; // сдвигаем элемент направо, пока не дошли
// место найдено, вставить элемент
a[j+1] = x;
}
}
Аналогично сортировке выбором, среднее, а также худшее число сравнений и пересылок оцениваются как Theta(n2), дополнительная память при этом не используется.
Хорошим показателем сортировки является весьма естественное поведение: почти отсортированный массив будет досортирован очень быстро. Это, вкупе с устойчивостью алгоритма, делает метод хорошим выбором в соответствующих ситуациях.
Алгоритм можно слегка улучшить. Заметим, что на каждом шаге внутреннего цикла проверяются 2 условия. Можно объединить из в одно, поставив в начало массива специальный сторожевой элемент. Он должен быть заведомо меньше всех остальных элементов массива.
Тогда при j=0 будет заведомо верно a[0] <= x. Цикл остановится на нулевом элементе, что и было целью условия j>=0.
Таким образом, сортировка будет происходить правильным образом, а во внутреннем цикле станет на одно сравнение меньше. С учетом того, что оно производилось Theta(n2) раз, это - реальное преимущество. Однако, отсортированный массив будет не полон, так как из него исчезло первое число. Для окончания сортировки это число следует вернуть назад, а затем вставить в отсортированную последовательность a[1]...a[n].
// сортировка вставками со сторожевым элементом
template
inline void insertSortGuarded(T a[], long size) {
T x;
long i, j;
T backup = a[0]; // сохранить старый первый элемент
setMin(a[0]); // заменить на минимальный
// отсортировать массив
for ( i=1; i < size; i++) {
x = a[i];
for ( j=i-1; a[j] > x; j--)
a[j+1] = a[j];
a[j+1] = x;
}
// вставить backup на правильное место
for ( j=1; j < size && a[j] < backup; j++)
a[j-1] = a[j];
// вставка элемента
a[j-1] = backup;
}
Функция setmin(T& x) должна быть создана пользователем. Она заменяет x на элемент, заведомо меньший(меньший или равный, если говорить точнее) всех элементов массива.
Комментарий от: SS
Работу со сторожевым элементом можно организовывать чуток проще. Сразу не
вставлять "элемент заведомо меньший всех элементов массива" а
искать минимальный (или максимальный в зависимости от того в каком порядке
сортируем) и менять его местами с первым элементом. Тогда все работает так
же но не надо анализировать границы возможных значений элементов массива и
кода лишнего становится поменьше. ИМХО.
|